Полимеры - definition. What is Полимеры
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

ХИМИЧЕСКОЕ СОЕДИНЕНИЕ, В КОТОРОМ ОДИН ЭЛЕМЕНТ ПОВТОРЯЕТСЯ МНОГО РАЗ
Высокомолекулярные соединения; Высокомолекулярное соединение; Полимер; Синдиотактический; Полимерные материалы; Высокомолекулярные вещества; Полимерный материал
  • Решеточная модель цепи
  • Гаусова модель бусинок, потенциал взаимодействия центров (см. также [[Потенциал Морзе]])
  • мини
  • Цепочки молекул [[полипропилен]]а

ПОЛИМЕРЫ         
высокомолекулярные химические соединения, состоящие из однородных повторяющихся групп атомов, широко применяемые в современной технике.
Природные, синтетические п.
ПОЛИМЕРЫ         
(от поли ... и греч. meros - доля, часть), вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев; молекулярная масса полимеров может изменяться от нескольких тысяч до многих миллионов. По происхождению полимеры делят на природные, или биополимеры (напр., белки, нуклеиновые кислоты, натуральный каучук), и синтетические (напр., полиэтилен, полиамиды, эпоксидные смолы), получаемые методами полимеризации и поликонденсации. По форме молекул различают линейные, разветвленные и сетчатые полимеры, по природе - органические, элементоорганические, неорганические полимеры. Для линейных и разветвленных полимеров характерен комплекс специфических свойств, напр. способность образовывать анизотропные волокна и пленки, а также существовать в высокоэластичном состоянии. Полимеры - основа пластмасс, химических волокон, резины, лакокрасочных материалов, клеев, ионитов. Из биополимеров построены клетки всех живых организмов. Термин "полимеры введен Й. Я. Берцелиусом в 1833.
Полимеры         
(от греч. polymeres - состоящий из многих частей, многообразный)

химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы (См. Макромолекула)) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Классификация. По происхождению П. делятся на природные (Биополимеры), например Белки, Нуклеиновые кислоты, Смолы природные, и синтетические, например Полиэтилен, Полипропилен, Феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные П., например Каучук натуральный); цепи с разветвлением (разветвленные П., например Амилопектин); трёхмерной сетки (сшитые П., например отверждённые Эпоксидные смолы). П., молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами, например Поливинилхлорид, Поликапроамид, Целлюлоза.

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определённой периодичности, П. называются стереорегулярными (см. Стереорегулярные полимеры).

П., макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми (см. также Сополимеры).

П., в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

В зависимости от состава основной (главной) цепи П. делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных П. наиболее распространены карбоцепные П., главные цепи которых состоят только из атомов углерода, например полиэтилен, Полиметилметакрилат, Политетрафторэтилен. Примеры гетероцепных П. - полиэфиры (Полиэтилентерефталат, Поликарбонаты и др.), Полиамиды, Мочевино-формальдегидные смолы, белки, некоторые Кремнийорганические полимеры. П., макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими (см. Элементоорганические полимеры). Отдельную группу П. образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид (см. Неорганические полимеры).

Свойства и важнейшие характеристики. Линейные П. обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и плёнки (см. Полимеров ориентированное состояние); способность к большим, длительно развивающимся обратимым деформациям (см. Высокоэластическое состояние); способность в высокоэластическом состоянии набухать перед растворением; высокая вязкость растворов (см. Растворы полимеров, Набухание). Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трёхмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые П. нерастворимы, неплавки и неспособны к высокоэластическим деформациям.

П. могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических П. возможно возникновение разнообразных надмолекулярных структур (См. Надмолекулярная структура) (фибрилл, сферолитов, монокристаллов и др.), тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) П. менее выражены, чем в кристаллических.

Незакристаллизованные П. могут находиться в трёх физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. П. с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластическое состояние называются эластомерами, с высокой - пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства П. могут меняться в очень широких пределах. Так, 1,4-цис-полибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре - 60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жёстких цепей, при температуре около 20 °С - твёрдый стеклообразный продукт, переходящий в высокоэластическое состояние лишь при 100 °С. Целлюлоза - полимер с очень жёсткими цепями, соединёнными межмолекулярными водородными связями, вообще не может существовать в высокоэластическое состоянии до температуры её разложения. Большие различия в свойствах П. могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный Полистирол - кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный (атактический) вообще не способен кристаллизоваться и размягчается при температуре около 80 °С.

П. могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (т. н. сшивание), например при вулканизации (См. Вулканизация) каучуков, дублении кожи (См. Дубление); распад макромолекул на отдельные, более короткие фрагменты (см. Деструкция полимеров); реакции боковых функциональных групп П. с низкомолекулярными веществами, не затрагивающие основную цепь (т. н. полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление Поливинилацетата, приводящее к образованию поливинилового спирта (См. Поливиниловый спирт). Скорость реакций П. с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу П. Наиболее явно это проявляется в случае сшитых П. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.

Некоторые свойства П., например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный П. из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.

Важнейшие характеристики П. - химический состав, Молекулярная масса и молекулярно-массовое распределение, степень разветвлённости и гибкости макромолекул, стереорегулярность и др. Свойства П. существенно зависят от этих характеристик.

Получение. Природные П. образуются в процессе Биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и др. методов они могут быть выделены из растительного и животного сырья. Синтетические П. получают полимеризацией (См. Полимеризация) и поликонденсацией (См. Поликонденсация). Карбоцепные П. обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углерод-углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных). Гетероцепные П. получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углерод-элемент (например, С = О, С ≡ N, N = С = О) или непрочные гетероциклические группировки (например, в окисях олефинов, лактамах).

Применение. Благодаря механической прочности, эластичности, электроизоляционным и др. ценным свойствам изделия из П. применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов - Пластические массы, резины (См. Резина), волокна (см. Волокна текстильные, Волокна химические), Лаки, Краски, Клеи, Ионообменные смолы. Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.

Историческая справка. Термин "полимерия" был введён в науку И. Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Т. о., содержание термина не соответствовало современным представлениям о П. "Истинные" синтетические полимеры к тому времени ещё не были известны.

Ряд П. был, по-видимому, получен ещё в 1-й половине 19 в. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к "осмолению" продуктов основной химической реакции, т. е., собственно, к образованию П. (до сих пор П. часто называли "смолами"). Первые упоминания о синтетических П. относятся к 1838 (Поливинилиденхлорид) и 1839 (полистирол).

Химия П. возникла только в связи с созданием А. М. Бутлеровым теории химического строения (начало 60-х гг. 19 в.). А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее своё развитие (до конца 20-х гг. 20 в.) наука о П. получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г. Бушарда, У. Тилден, нем. учёный К. Гарриес, И. Л. Кондаков, С. В. Лебедев и др.). В 30-х гг. было доказано существование свободнорадикального (Г. Штаудингер и др.) и ионного (американский учёный Ф. Уитмор и др.) механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса.

С начала 20-х гг. 20 в. развиваются также теоретические представления о строении П. Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические П., сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория "малых блоков"). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г. Штаудингер. Победа идей этого учёного (к началу 40-х гг. 20 в.) заставила рассматривать П. как качественно новый объект исследования химии и физики.

Лит.: Энциклопедия полимеров, т. 1-2, М., 1972-74; Стрепихеев А. А., Деревицкая В. А., Слонимский Г. Л., Основы химии высокомолекулярных соединений, 2 изд., [М., 1967]; Лосев И. П., Тростянская Е. Б., Химия синтетических полимеров, 2 изд., М., 1964; Коршак В. В., Общие методы синтеза высокомолекулярных соединений, М., 1953; Каргин В. А., Слонимский Г. Л., Краткие очерки по физике-химии полимеров, 2 изд., М., 1967; Оудиан Дж., Основы химии полимеров, пер. с англ., М., 1974; Тагер А. А., физико-химия полимеров, 2 изд., М., 1968; Тенфорд Ч., физическая химия полимеров, пер. с англ., М., 1965.

В. А. Кабанов.

ويكيبيديا

Полимеры

Полиме́ры (от греч. πολύ «много» + μέρος «часть») — вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими связями. Полимерами могут быть неорганические и органические, аморфные и кристаллические вещества. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико (в ином случае соединение будет называться олигомером). Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются. Как правило, полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.

Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса, они называются термопласты, если с помощью химических связей — реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвлённым, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.

В строении полимера можно выделить мономерное звено — повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (−CH2−CHCl−)n, каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами.

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических преобразований. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.

أمثلة من مجموعة نصية لـ٪ 1
1. Так что полимеры обещают огромный экономический эффект.
2. К тому же оказалось, что новые полимеры делают прочнее бетон.
3. Но если проиграны полимеры-значит, проиграны и помидоры.
4. Химическая промышленность тоже производит органические вещества- полимеры, например.
5. Там, на кафедре, определился и главный научный интерес - полимеры.
What is ПОЛИМЕРЫ - definition